TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells
نویسندگان
چکیده
Excessive production of reactive oxygen species (ROS) induced by hyperglycemia increased the secretion of interleukin-1β (IL-1β), which contributes to the pathogenesis of diabetes and its complications. Although high glucose (HG)-induced oxidative stress and aberrant Ca2+ channels activity causes an increase in transmembrane Ca2+ influx, however the relative contribution of Transient receptor potential (TRP) channels is not well studied. Here, we identified that HG (30 mM glucose for 48 h) induced the activation of the NLRP3-ASC inflammasome, leading to caspase-1 activation, and IL-1β and IL-18 secretion in human monocytic cell lines. Moreover, we used a hyperglycemia model in U937 monocytes, showing that the activation of TRPM2 was augmented, and TRPM2-mediated Ca2+ influx was critical for NLRP3 inflammasome activation. This pathway involved NADPH oxidase-dependent ROS production and TXNIP-NLRP3 inflammasome pathway. Furthermore, the inhibition of TRPM2 reduced ROS production and lowered NADPH oxidase activity via cooperatively interaction with p47 phox in response to HG. These results provided a mechanistic linking between TRPM2-mediated Ca2+ influx and p47 phox signaling to induce excess ROS production and TXNIP-mediated NLRP3 inflammasome activation under HG, and suggested that TRPM2 represented a potential target for alleviating NLRP3 inflammasome activation related to hyperglycemia-induced oxidative stress in Type 2 diabetes Mellitus (T2DM).
منابع مشابه
Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملNLRP3 Gene Silencing Ameliorates Diabetic Cardiomyopathy in a Type 2 Diabetes Rat Model
BACKGROUND Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved. METHODS Type 2 diabetic rat model was induced by high fat diet and low dose...
متن کاملHigh Glucose and Lipopolysaccharide Prime NLRP3 Inflammasome via ROS/TXNIP Pathway in Mesangial Cells
While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately ...
متن کاملReactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis
NLRP3/IL-1β activation via thioredoxin (TRX)/thioredoxin-interacting protein (TXNIP) following mitochondria ROS (mtROS) overproduction plays a key role in inflammation. However, the involvement of this process in tubular damage in the kidneys of patients with diabetic nephropathy (DN) is unclear. Here, we demonstrated that mtROS overproduction is accompanied by decreases in TRX expression and T...
متن کاملTRPM2 links oxidative stress to the NLRP3 inflammasome activation
Exposure to particulate crystals can induce oxidative stress in phagocytes, which triggers NLRP3 inflammasome-mediated interleukin-1β secretion to initiate undesirable inflammatory responses that are associated with both autoinflammatory and metabolic diseases. Although mitochondrial reactive oxygen species have a central role in NLRP3 inflammasome activation, how reactive oxygen species signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016